Skip to main content
Log in

Substantial Organic and Particulate Nitrogen and Phosphorus Export from Geomorphologically Stable African Tropical Forest Landscapes

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Aquatic losses of nutrients are important loss vectors in the nutrient budgets of tropical forests. Traditionally, research has focused mainly on losses of inorganic nutrient forms, whereas the potential contribution of organic and particulate losses to the total nutrient export budget is much less constrained. In this study, we quantified full aquatic nitrogen (N) and phosphorus (P) exports, including inorganic, organic and particulate forms, from a moist tropical lowland forest and a semi-dry Miombo woodland forest within the Congo Basin. While particulate organic N (PON) was the highest N loss vector in the lowland stream (3.34 kg N ha−1 y−1; 44% of TN), dissolved organic N (DON) dominated the export in the Miombo stream (1.41 kg N ha−1 y.−1; 47% of TN). Aquatic P export was dominated by dissolved organic P (DOP) in both streams, with yields of 0.29 kg P ha−1 y−1 (65% of TP) in the lowland and 0.24 kg P ha−1 y−1 (69% of TP) in the Miombo. Storm events were driving those losses, exporting disproportionally high N and P loads during short periods of stormflow conditions (32% and 47% of TN and 20% and 40% of TP in the lowland and Miombo, respectively). Our results highlight the need to take particulate and organic forms into account as important loss vectors in the nutrient balance of tropical forests. This finding is of particular importance considering the projected increasing rainfall intensities in many tropical regions which might exacerbate the export of these nutrient forms in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data Availability

Data are available at: https://doi.org/10.5281/zenodo.6586018.

References

  • Barthel M, Bauters M, Baumgartner S, Drake TW, Bey N, Bush G, Boeckx P, Botefa CI, Dériaz N, Ekamba G, Gallarotti N, Mbayu F, Mugula J, Makelele I, Mbongo C, Mohn J, Mandea J, Mpambi D, Ntaboba L, Rukeza M, Spencer R, Summerauer L, Vanlauwe B, Van Oost K, Wolf B, Six J. 2022. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat Commun 13:330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgartner S, Barthel M, Drake TW, Bauters M, Makelele IA, Mugula JK, Summerauer L, Gallarotti N, Ntaboba LC, Van Oost K, Boeckx P, Doetterl S, Werner R, Six J. 2020. Seasonality, drivers, and isotopic composition of soil CO2 fluxes from tropical forests of the Congo Basin. Biogeosciences 17:6207–6218.

    Article  CAS  Google Scholar 

  • Baumgartner S, Bauters M, Barthel M, Alebadwa S, Bahizire N, Sumaili C, Ngoy D, Kongolo M, Mujinya B, Cizungu L, Six J, Boeckx P, Van Oost K, Drake TW. 2022. Fluvial sediment export from pristine forested headwater catchments in the Congo Basin. Geomorphology 398:108046.

    Article  Google Scholar 

  • Baumgartner S, Bauters M, Barthel M, Drake TW, Ntaboba LC, Bazirake BM, Six J, Boeckx P, Van Oost K. 2021. Stable isotope signatures of soil nitrogen on an environmental-geomorphic gradient within the Congo Basin. SOIL 7:83–94.

    Article  CAS  Google Scholar 

  • Bauters M, Drake TW, Verbeeck H, Bodé S, Hervé-Fernandez P, Zito P, Podgorski DC, Boyemba F, Makelele I, Ntaboba LC, Spencer RGM, Boeckx P. 2018. High fire-derived nitrogen deposition on central African forests. Proc Natl Acad Sci 115:3.

    Article  Google Scholar 

  • Bauters M, Drake TW, Wagner S, Baumgartner S, Makelele IA, Bodé S, Verheyen K, Verbeeck H, Ewango C, Cizungu L, Van Oost K, Boeckx P. 2021. Fire-derived phosphorus fertilization of African tropical forests. Nat Commun 12:5129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauters M, Mapenzi N, Kearsley E, Vanlauwe B, Boeckx P. 2016. Facultative nitrogen fixation by legumes in the central Congo basin is downregulated during late successional stages. Biotropica 48:3.

    Article  Google Scholar 

  • Bauters M, Verbeeck H, Rütting T, Barthel M, Bazirake MB, Bamba F, Bodé S, Boyemba F, Bulonza E, Carlsson E, Eriksson L, Makelele I, Six J, Cizungu NL, Boeckx P. 2019. Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol Monogr 89:1.

    Article  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson K, Roupsard O, … Papale D. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329.

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:1.

    Article  Google Scholar 

  • Brookshire ENJ, Gerber S, Menge DNL, Hedin LO. 2012. Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol Lett 15:1.

    Article  Google Scholar 

  • Bruijnzeel LA. 1991. Nutrient input–output budgets of tropical forest ecosystems: a review. J Trop Ecol 7:1.

    Article  Google Scholar 

  • Butler OM, Elser JJ, Lewis T, Mackey B, Chen C. 2018. The phosphorus-rich signature of fire in the soil-plant system: a global meta-analysis. Ecol Lett 21:335–44.

    Article  PubMed  Google Scholar 

  • Campbell B, editor. 1996. The Miombo in Transition: Woodlands and Welfare in Africa. Bogor: CIFOR - Center for International Forestry Research.

  • Campo J, Maass M, Jaramillo VJ, Martínez-Yízar A, Sarukhán J. 2001. Phosphorus cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry 53:2.

    Article  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397:6719.

    Article  Google Scholar 

  • Clark KE, Hilton RG, West AJ, Malhi Y, Gröcke DR, Bryant CL, Ascough PL, Robles Caceres A, New M. 2013. New views on “old” carbon in the Amazon River: Insight from the source of organic carbon eroded from the Peruvian Andes. Geochem Geophys Geosyst 14:5.

    Article  Google Scholar 

  • Correll DL, Jordan TE, Weller DE. 1999. Transport of nitrogen and phosphorus from Rhode River watersheds during storm events. Water Resour Res 35:8.

    Article  Google Scholar 

  • ESA. 2017. Land Cover CCI Product User Guide Version 2. Tech. Rep. Available at: https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf.

  • Fernández-Martínez M, Vicca S, Janssens IA, Sardans J, Luyssaert S, Campioli M, Chapin FS, Ciais P, Malhi Y, Obersteiner M, Papale D, Piao SL, Reichstein M, Rodà F, Peñuelas J. 2014. Nutrient availability as the key regulator of global forest carbon balance. Nat Clim Change 4:6.

    Google Scholar 

  • Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:12.

    Article  Google Scholar 

  • Fuka DR, Walter MT, Archibald JA, Steenhuis TS, Easton ZM. 2015. EcoHydRology: A community modeling foundation for Eco-Hydrology. R package version 0.4.12. (p. 48). http://cran.rproject.org/package=EcoHydRology

  • Gallarotti N, Barthel M, Verhoeven E, Pereira IE, Bauters M, Baumgartner S, Drake TW, Boeckx P, Mohn J, Longepierre M, Kalume J, Makelele I, Cizungu LN, Johan S. 2021. In-depth analysis of N2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. ISME J 15:2420.

    Article  Google Scholar 

  • Haensler A, Saeed F, Jacob D. 2013. Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Clim Change 121:2.

    Article  Google Scholar 

  • Harris NL, Gibbs DA, Baccini A, Birdsey RA, de Bruin S, Farina M, Fatoyinbo L, Hansen MC, Herold M, Houghton RA, Potapov PV, Suarez DR, Roman-Cuesta RM, Saatchi SS, Slay CM, Turubanova SA, Tyukavina A. 2021. Global maps of twenty-first century forest carbon fluxes. Nat Clim Change 11:3.

    Article  Google Scholar 

  • Hedin LO, Armesto JJ, Johnson AH. 1995. Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory author. Ecology 76:2.

    Article  Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge DNL, Barron AR. 2009. The nitrogen paradox in tropical forest ecosystems. Ann Rev Ecol Evol Syst 40:1.

    Article  Google Scholar 

  • Hedin LO, Vitousek PM, Matson PA. 2003. Nutrient losses over four million years of tropical forest development. Ecology 84:9.

    Article  Google Scholar 

  • Holtgrieve GW, Jewett PK, Matson PA. 2006. Variations in soil N cycling and trace gas emissions in wet tropical forests. Oecologia 146:4.

    Article  Google Scholar 

  • Hoover DJ, MacKenzie FT. 2009. Fluvial fluxes of water, suspended particulate matter, and nutrients and potential impacts on tropical coastal water Biogeochemistry: Oahu, Hawai’i. Aquat Geochem 15:4.

    Article  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Field CB. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:7202.

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Tan J. 2019. Integrated multi-satellitE retrievals for GPM (IMERG) technical documentation. IMERG Tech Doc 01:01.

    Google Scholar 

  • Jung M, Schwalm C, Migliavacca M, Walther S, Camps-Valls G, Koirala S, Anthoni P, Besnard S, Bodesheim P, Carvalhais N, Chevallier F, Gans F, Goll SD, Reichstein M. 2020. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17:5.

    Article  Google Scholar 

  • Koehler B, Corre MD, Veldkamp E, Wullaert H, Wright SJ. 2009. Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. Glob Change Biol 15:8.

    Article  Google Scholar 

  • Stenfert Kroese J, Quinton JN, Jacobs SR, Breuer L, Rufino MC. 2021. Particulate macronutrient exports from tropical African montane catchments point to the impoverishment of agricultural soils. Soil 7:1.

    Article  Google Scholar 

  • Lesack LFW. 1993. Water balance and hydrologic characteristics of a rain forest catchment in the central Amazon Basin. Water Resour Res 29:3.

    Google Scholar 

  • Lewis WM. 1986. Nitrogen and phosphorus runoff losses from a nutrient-poor tropical moist forest. 67:5

  • Lewis WM, Saunders JF. 1989. Concentration and Transport of dissolved and suspended substances in the Orinoco river. Biogeochemistry 7:3.

    Article  Google Scholar 

  • Lewis WM, Melack JM, McDowell WH, McClain M, Richey JE. 1999. Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry 46:1–3.

    Article  Google Scholar 

  • Lewis WM, Hamilton SK, Saunders JF. 1995. Rivers of Northern South America. In: Cushing CE, Cummins KW, Minshall GW, Eds. River and stream ecosystems, . Amsterdam: Elsevier. pp 219–56.

    Google Scholar 

  • Lloret E, Dessert C, Pastor L, Lajeunesse E, Crispi O, Gaillardet J, Benedetti MF. 2013. Dynamic of particulate and dissolved organic carbon in small volcanic mountainous tropical watersheds. Chem Geol 351.

  • Malmer A. 1996. Hydrological effects and nutrient losses of forest plantation establishment on tropical rainforest land in Sabah, Malaysia. J Hydrol 174.

  • Mayes M, Melillo J, Neill C, Palm C, Mustard J, Nyadzi G. 2019. Nitrogen cycle patterns during forest regrowth in an African Miombo woodland landscape. J Geophys Res Biogeosci 124:6.

    Article  Google Scholar 

  • McDowell WH, Asbury CE. 1994. Exports of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnol Oceanogr 39:1.

    Article  Google Scholar 

  • Neill C, Deegan LA, Thomas SM, Cerri CC. 2001. Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecol Appl 11:6.

    Article  Google Scholar 

  • Perakis SS, Hedin LO. 2002. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415:6870.

    Article  Google Scholar 

  • Pett-Ridge JC. 2009. Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico. Biogeochem 94:1.

    Article  Google Scholar 

  • Raymond PA, Saiers JE. 2010. Event controlled DOC export from forested watersheds. Biogeochemistry 100:1.

    Article  Google Scholar 

  • Reed SC, Townsend AR, Taylor PG, Cleveland CC. 2011. Phosphorus cycling in tropical forests growing on highly weathered soils. In: Brünemann E, Oberson A, Frossard E, Eds. Phosphorus in action, . Berlin: Springer. pp 215–43.

    Google Scholar 

  • Rees RM, Wuta M, Furley PA, Li C. 2006. Nitrous oxide fluxes from savanna (miombo) woodlands in Zimbabwe. J Biogeogr 33:3.

    Article  Google Scholar 

  • Saunders TJ, McClain ME, Llerena CA. 2006. The biogeochemistry of dissolved nitrogen, phosphorus, and organic carbon along terrestrial-aquatic flowpaths of a montane headwater catchment in the Peruvian Amazon. Hydrol Processes 20.

  • Slomp CP. 2012. Phosphorus cycling in the estuarine and coastal zones: sources, sinks, and transformations. In: Wolanski E, McLusky D, Eds. Treatise on estuarine and coastal science. Vol. 5. London: Elsevier Academic Press. pp 201–29.

    Google Scholar 

  • Sollins P, Robertson GP, Uehara G. 1988. Nutrient mobility in variable- and permanent-charge soils. Biogeochemistry 199:6.

    Google Scholar 

  • Suzumura M. 2008. Persulfate chemical wet oxidation method for the determination of particulate phosphorus in comparison with a high-temperature dry combustion method. Limnol Oceanogr Methods 6:11.

    Article  Google Scholar 

  • Taylor PG, Wieder WR, Weintraub S, Cohen S, Cleveland CC, Townsend AR, Templer PH. 2015. Organic forms dominate hydrologic nitrogen export from a lowland tropical watershed. Ecology 96:5.

    Article  Google Scholar 

  • Townsend-Small A, McClain ME, Hall B, Noguera JL, Llerena CA, Brandes JA. 2008. Suspended sediments and organic matter in mountain headwaters of the Amazon River: results from a 1-year time series study in the central Peruvian Andes. Geochimica Et Cosmochimica Acta 72:3.

    Article  Google Scholar 

  • Van Ranst E, Baert G, Ngongo M, Mfuka P. 2010. Carte pédologique de Yangambi, planchette 2: Yangambi, échelle 1:50.000. UGent; Hogent; UNILU; UNIKIN.

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS. 2009. Nutrient imbalances in agricultural development. Science 324:5934.

    Article  Google Scholar 

  • Vitousek PM, Hedin LO, Matson PA, Fownes JH, Neff J. 1998. Within-System element cycles, input-output budgets, and nutrient limitation. Success Limit Front Ecosyst Sci 432–51.

  • Vitousek PM, Reiners WA. 1975. Ecosystem succession and nutrient retention: a hypothesis. BioScience 25:6.

    Article  Google Scholar 

  • Wang R, Goll D, Balkanski Y, Hauglustaine D, Boucher O, Ciais P, Janssens I, Penuelas J, Guenet B, Sardans J, Bopp L, Vuichard N, Zhou F, Li B, Piao S, Peng S, Huang Y, Tao S. 2017. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Glob Change Biol 23:11.

    Article  CAS  Google Scholar 

  • Weintraub SR, Taylor PG, Porder S, Cleveland CC, Asner GP, Townsend AR. 2015. Topographic controls on soil nitrogen availability in a lowland tropical forest. Ecology 96:6.

    Article  Google Scholar 

  • Wright SJ. 2019. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol Monogr 89:4.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the villagers of the Yoko village and around the Lupembashi field site for their support and hospitality during our field-campaigns. Furthermore, we thank Héritier Ololo Fundji, Degra Ngoy, Claudino Sumaili, Merveille Kongolo and the CSB at UniKis for the assistance and the organization of the fieldtrips. We are also thankful for Katja Van Nieuland and Samuel Bodé for their help with sample analysis. This research has been funded by the Fonds de la Recherche Scientifique – FNRS (project numbers: T.0059.18 and J.0167.19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Baumgartner.

Additional information

Author contributions: SB, KvO, PB, JS and MBau conceptualized the study. SB, TWD, MBau, Mbar, SA, NB and BMB conducted field work. SB conducted laboratory work and data analysis. MBau, TWD, Mbar and KvO helped SB outlining the manuscript. The manuscript was written by SB with contributions from all co-authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1887 KB)

Supplementary file2 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumgartner, S., Bauters, M., Drake, T.W. et al. Substantial Organic and Particulate Nitrogen and Phosphorus Export from Geomorphologically Stable African Tropical Forest Landscapes. Ecosystems 26, 553–567 (2023). https://doi.org/10.1007/s10021-022-00773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00773-6

Keywords

Navigation